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The truncated expansion of a function Ix I is used to obtain the total Hfickel 
~--electron energy partitioned into various sums, in terms of moments as well 
as molecular fragments. The additivity is in general satisfactory for acyclic 
and cyclic systems, which exhibit a regularity called the generalized Hfickel 
rule which indicates whether a fragment plays the role of stabilization or of 
destabilization. A unified treatment based on the energy partitioning is pro- 
posed for rationalizing aromaticity, reactivities and bond lengths of conjugated 
hydrocarbons. The relationships between molecular properties and topology 
can be deduced from inspecting, enumerating or summing the relative 
contributions of various fragments. 

Key words: Hiickel theory--  Moments - -  Molecular topology-- Aroma- 
ticity - -  Reactivity 

1. Introduction 

Extensive experimental results indicate that chemical reactions usually begin at 
a localized position in the reactants. A local interaction view has been the starting 
point for the empirical understanding and interpretation of molecular behaviour 
for chemists. However, MO (molecular orbital) theory displays a delocalized 
picture for the movement of electrons [1]. In order to conform with chemical 
usage, in MO theory, quantities defined in terms of the coefficients of occupied 
MO's such as charge density, bond order, free valence and others were introduced 
[2]. On the other hand, local MO schemes have been successfully proposed by 
suitable linear transformations of the SCF(self consistent field)-MO's [3, 4]. 
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In MO theory, one first solves the secular equations to obtain energy levels and 
MO coefficients. Alternative approaches exist: for example, the use of moments 
enables the solution of the secular equation to be by-passed and molecular 
information determined directly. Haydock [5], Burdett [6-8] and their coworkers 
obtained the DOS (density of state), stabilized energy and other results for solids 
by means of the continued fraction [9]. On the other hand, Whitehead [10] 
discussed the distribution of energy levels in nuclear physics by analyzing the 
triangular matrice of moments. Of course, they all simplified the original theory 
to a certain degree, but even so the results seem far from clarifying the intuitive 
relationships which exist between molecular behaviour and structure. Very 
recently, Hall [11] suggested that an analysis of moments in terms of graphical 
invariants could be of prime importance in understanding these molecules. 

Following our previous paper [12], we intend to develop an approach, which 
can be handled easily, to obtain MO information using molecular topology. We 
choose to use Hiickel MO theory for this discussion. In this paper, a scheme 
based on moment analysis and energy partitioning is proposed for determining 
the stability and reactivity of conjugated hydrocarbons without referring to the 
usual manipulation of MO theory. We start with a truncated expansion of a 
function [xl and a set of relations holding between moments and molecular 
fragments. The total ~--electron energy is partitioned into various sums character- 
ized by local structures whose arguments are moments as well as molecular 
fragments. Their contributions satisfy the generalized Hiickel rule which gives 
an insight into the role played by various fragments. These fragments can be 
categorized as 4n- and (4n + 2)-species, they destabilize and stabilize the molecule 
and its local sites respectively. A unified energy scheme is then proposed in which 
the total resonance energy, point-energy, edge-energy and ring resonance energy 
are used for rationalizing the aromaticity, reactivities and bond lengths of conju- 
gated hydrocarbons. The procedure can be manipulated by simply enumerating 
various fragments or comparing their relative contributions. 

2. Moments and molecular fragments 

Generally, in MO calculations, secular equations are solved by computing both 
the energy levels and MO's simultaneously. However, if moments are used instead, 
it is possible to utilize only the energy sequence without referring to the MO's 
[5-8, 10]. Moments are related to the topological connectivity [12] of a molecule 
and are able to give chemists explicit intuitive results. 

Let us start with Hiickel secular equation 

IxI-AI = 0  (1) 

where, A and I signify the adjacency and unit matrices respegtively. If the xi 
(i = 1, 2 , . . . ,  N) represent the energy levels, then the / th  moment, u~, equals the 
sum of the /th powers of the xls 

N 
", = 2 xl (2) 

i=l 
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An alternative definition, which is equivalent to Eq. (2) is given by 
N 

ul = trace (A t) = ~ Y. Ai~,A,~t3"  �9 �9 A~, i .  (3) 
i : 1 c~,f l ,  . . . , T 

Since the entries of the adjacency matrix A satisfying 

{ 10 when points i and j are connected 
A~ = otherwise (4) 

each term in the summation of Eq. (3) is a self-adjoint walk of length 1 starting 
from point i and passing through points a,/3, . . . ,  3,, without or with repetition, 
before returning to point i. The count of such walks with respect to each point 
gives the value of u;. Obviously, there are only 2/-moments for alternant hydro- 
carbons. 

u2; is in any case wetl expressed as the sum of acyclic and cyclic components 
symbolized by u~t and u[; respectively: 

! ff 
U21 = U2l'q- U21 ( 5 )  

walks enumerated in u~; and u;; are spanned by acyclic and cyclic fragments 
respectively, namely 

! _ _  
hi21- ~, C~l '{G'}  ( 6 )  

G '  

u~l : Y~ C ~ " { G " }  (7) 
G "  

in which {G'} and {G"} represent the number of acyclic and cyclic fragments, 
C~' and C2~" denote the number of self-adjoint walks of length 21 spanned by 
G' and G", respectively. The acyclic fragments { G'} and corresponding coefficients 
C2~' in Eq. (6) have been tabulated previously [12], thus we review them partially 
up to u~2 as ~l lows 

0 C > ~ O  0 0 0 C>-~O 0 0 0 ~ 0 

6 
{1} {2} {3} {4} {31} {5} 

o--~i---o o o---<>---o--o o o o---<~ o ~-o--~ 

{41} {6} {51} {501} 

ollo ooooooooi  -  
{411} {7} {61} loooolI I 

{601} {511} {5101} 

{502} 

Fig. 1 
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u~={1} 

u~=2{2} 

u~= 2{2}+413} 

u~ = 2{2}+ 12{3}+6{4}+ 12{31} 

u ~ = 2{2} + 28{3} + 32{4} + 72{31 } + 8{5} + 16{41 } 

U~o = 2{2} + 60{3} + 120{4} + 300{31} + 60{5} + 140{41} 

+ 10{6} + 20{51} + 20{501} + 40{411} 

u ~2 = 2{2} + 124{3} + 390{4} + 1080{31 } + 300{5} + 804{41} 

+ 96{6} + 216{51} + 228{501} + 504{411} 

+ 12{7} + 24{61 } + 24{601} + 48{511 } + 48{5101} + 24{502}. (8) 

A similar procedure can be utilized for obtaining the cyclic component u~l, but 
in this paper only the benzenoid fragments are illustrated. The symbol 
{~a~br :'.. .} is used for characterizing a cyclic member {G"} in which an 
n-membered ring links with side chains a, b, c , . . .  at their points ~,/3, % . . .  respec- 
tively. A vertical line signifies that the two rings share an edge. The lower members 
encountered in the benzenoid case are compiled in Fig. 2. In the following, 

r t  formulas up to u12 are listed. 

{$} {61} {$2} {611} {6101} {51001} 

{53} {521} {g201} {52001} {5111} 

{610101} {g[~} {10} {101} 

Fig. 2 

u~ = 12{6} 

u~' = 96{6} + 16{61} 

u~'o = 540{6} + 180{61} + 20{62} + 20{611} + 20{6101} 

+ 20{61001} + 20{~} 

{63} 

CL 
{61101} 

{12} 
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u~'2 = 2724{6} + 1344{61} + 264{62} + 312{611} + 288{6101} 

+ 288{61001} + 240{]-0} + 24{63 ~} + 48{632} + 24{621 } 

+ 24{6201} + 24{62001} + 24{6111} + 24{61101} + 24{610101} 

+ 72{616 } + 24{i-01 } + 24{~}. 

283 

(9) 

3. Expansion of function Ix[ 

The function Ix[ means the absolute value of the variable x. Since it is an even 
function, in principle it can be expanded in terms of a complete set of even bases 
functioning under certain conditions [13-15]. Unfortunately, Ixl is singular at 
x = 0. However, if x varies within a definite interval (not closed to zero), a 
truncated expansion of Ixl is a reasonable approximation. Thus one can write 

L 

ix] = ao+ azX2+ a4x4+ �9 �9 �9 + a2LX 2L = Y~ az;X 2;. (10) 
/ = 0  

When 0 . 10 -  < x-<3.00, which is most probable for Hiickel levels of conjugated 
molecules, parametrization of Eq. (10) is easily carried out by means of least 
square computations. In this way, numerical values of a 's  in Eq. (10) are 
determined and tabulated for three cases where L is equal to 2, 4 and 6 (see 
Table 1). 

A fundamental trend in Table 1 is that the coefficients in different rows differ 
somewhat in magnitude but tend to converge and change sign steadily. This 
implies that the regularity inherent in the expansion of Ixl is not changed if the 
tuncation scheme is varied. Such evidence is essential for the later developments. 

4. Total ~--electron energy 

It is well known that the total 7r-electron energy of the ground state, E~, for 
alternant hydrocarbons can be written as the sum of absolute values of xi spanning 
the entire orbital set. 

N 

E~.= 2 [xil �9 (11) 
i : -1  

Table 1. Numerical values of a ' s i n  the three truncations 

L a 0 ~2 ~4 ~6 ~8 ffl0 ff12 

2 0.3904 0.5262 -0.0283 

4 0.2393 0.9253 -0.2105 0.02733 -0.00130 
6 0.1783 1.2955 -0.6277 0.2042 -0.03565 0.00310 -0.000105 
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On substituting Eq. (10) into Eq. (11) and utilizing the definition of moments 
expressed by Eq. (2), one can obtain an additive formula for E= 

L 

/~ -  = O/0U0"t- O/2U2"q - ~  " " -1- OI2LU2L = ~ Ol21U21 (12) 
/=0 

where a's have been tabulated. Since the moments are the combinations of 
various fragments indicated by Eqs. (6)-(9), it is straightforward to transform 
Eq. (12) into another form in which the molecular fragments are variables 

E~ = Z/3G,{G'} + Y /3G,,{G"} (13) 
G" G" 

where/3 c' and/3 o,, are 

L 
/36 = F. C~a2,  (G=  G' or G"). (14) 

/=0 

Numerical values of fie have been computed and listed in Table 2 for L = 2, 4 
and 6, respectively. 

Equation (13) exhibits the intuitive meaning of additivity, namely that the 
coefficient/36 signifies the contribution of fragment G. That, the absolute magni- 
tude of/36 shown in Table 2 increases in inverse proportion to the extension of 
G reveals the principal role played by the smaller fragments. The regular alterna- 
tion of signs for/36 satisfies the generalized Hfickel rule. This rule is based on 
classifying all fragments into two categories, namely the (4n + 2)- and 4n-species 
specified by a count of edges in which chain edges are doubly enumerated but 
those in rings are singly enumerated. Whether/36 is positive or negative depends 
on whether such a count equals 4n + 2 or 4n since 4n + 2 and 4n demonstrate 
bonding effects of opposite topology. For example, the counts of fragments {4} 
and {6} are equal to 6 and their/36's are positive, thus both of them stabilize the 
molecule. By way of contrast, fragments {3} and {61} give counts equalling 4 and 
8 respectively with the negative/3~'s, thus destabilize the molecule. 

For a thorough understanding of the above results, let us review the famous 

Table 2. Numerical  values of /3  o in various truncations 

L = 2  

L = 4  

L = 6  

{1} 42} {3} 
0.3904 0 . 9 9 5 9  -0.1131 

41} 42} {3} {4} {31} {5} {41} {6} {61} 
0.2393 1.4815 -0.5505 0 . 1 2 2 5  0 . 2 3 4 7  -0.01036 -0.02072 0 .2036  -0.02072 

{1} {2} {3} {4} {31} 45} {41} {6} {61} 
0.1783 1.6786 -0.8886 0 . 4 1 5 6  0 . 7 0 0 6  -0.1307 -0.2208 0.4164 -0.1535 

{6} 451} {501} 4411} {7} {61} {601} {511} 45101} 
0.02092 0.03932 0.03806 0.07108 -0.00126 -0.00252 -0.00252 -0.00504 -0.00504 

{502} {62} 4611} {6101} {61001} {631 } {632} {621} {6201} 
-0.00252 0.03428 0.02924 0 .03176 0.03176 -0.00252 0.00504 -0.00252 -0.00252 
{62001} {6111} { 1 1 0 1 }  4610101} {616} {10} {N1} {H} 
-0.00252 -0.00252 -0.00252 -0.00252 -0.00756 0.03680 -0.00252 -0.00252 
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Coulson formula [16] 

1 f ~  ln lHc(X) ld  x (15) 
E ~ - = - ~  - ~ "  X2 

where H e ( x )  is a variant of the characteristic polynomial P c ( x )  in which all the 
coefficients are positive, i.e. if 

P c ( x )  = ( • ) ( x  N - a 2 x  N 2+ a 4 x U - 4  . . . .  • a N )  (16) 

with a2, a 4 , . . . ,  aN being positive, then 

H G ( X )  "= X 1 + a 2 x 2 +  a 4 x 4 +  �9 �9 �9 + a u x  u. (17) 

Equation (15) reveals that the relationship between E= and molecular topology 
is concealed in the coefficients of P c ( x ) .  These coefficients have recently been 
expressed in terms of molecular fragments as follows [17, 18] 

. �9 �9 (18 )  

where brackets represent binomial factors. One could easily find that terms 
involving fragment {3} are negative while others are positive. We can conclude 
from Eq. (15) that fragment {3} destabilizes, but fragments {2}, {4}, {31} and {6} 
stabilize molecules. The omitted formulas of as, alo, a12, . . . induce similar 
qualitative information for the larger fragments in agreement with Table 2. 

Of course, Eq. (10) is only valid provided the x = 0 is not involved. The reason 
is that the parametrization is carried out on the basis of a truncated approximation 
with a nonvanishing constant a 0 inadequate for modeling the function Ix[ at 
x =0. In order that Eq. (10) also holds for the zero point, c% must be properly 
eliminated. Thus we propose to modify Eq. (10) as follows 

[xl = ao + a 2 x  2 + a 4 x  4 +"  �9 �9 + a 2 L x  2L - ao  8~,o ( 1 9 )  

where 6x,o signifying Kronecker's symbol. As corollaries, E,~'s in Eqs. (12) and 
(13) are changed into 

L 
E= = E cr2tu21 - Z~ (20) 

I=0 

E ~  = E 3 o , { G ' }  + E / 3 o , , { G " } -  Z~o ( 2 ! )  
C' (3" 

where z represents the number of zero levels involved. These additive formulas 
have been utilized for calculating 187 acyclic and 52 cyclic hydrocarbons where 
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63% contain zero levels. The numerical values of E~'s agree well with those 
exactly computed. For example, when parameters of L = 2, 4 and 6 are adopted, 
the coefficients of correlation are -0.9982, -0.9995 and -0.9998 respectively. 

5. Aromaticity 

There has been considerable research on aromaticity as defined by Dewar's 
criterion [1]: 

REPE = (E= - E r e f ) / N  (22) 

where Eref representing the total energy of  reference molecule is hypothetically 
additive in terms of the acyclic fragments involved [12, 19, 20, 21]. In the present 
treatment, Erer is obviously equal to the first term of Eq. (21), namely 

Erof = E ~c,{C'} (23) 
G'  

Therefore, the REPE is either evaluated by the difference 

or straightforwards as follows 

Equation (25) indicates that the aromaticity of a molecule depends on the 
behaviour of its cyclic fragments, which is governed by the generalized Hiickel 
rule. Zero levels are solely associated with anti-aromaticity. We can easily compute 
REPE's according to Eqs. (24) or (25) by utilizing Table 2 and counting the 
various fragments. (/3~'s for fragments involving 3-, 4-, 5-, 7- and 8-membered 
rings have been obtained and will be published elsewhere.) In the following Fig. 
3, a number of molecules are chosen and their REPE's are listed in Table 3 
together with those from other sources for comparison. 

From Table 3, we can see that REPE's or TRE [25, 26] from different sources 
show similar qualitative trends, but the result of this paper are quantitatively 
close to TRE for larger molecules. In other words, values calculated from Eqs. 
(24) or (25) are comparable to those calculated in the TRE scheme. This also 
implies that the characteristic polynomial of a reference molecule obtained from 
Eq. (23) via enumerating acyclic fragments might approach the matching poly- 
nomial introduced in the TRE scheme. 

Gutman [27] and Heilbronner [28] have shown the failure of  TRE scheme for 
some nonclassical systems. It seems that the reference entities must not contain 
zero levels as indicated by Eq. (23). This suggests that an extremely active species 
is an inadequate standard for characterizing aromaticity. For example, consider 
the molecules in Fig. 4 [27], it is easy to verify that the acyclic or matching 
polynomials of these molecules contain zero levels. 
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1 2 3 4 5 

6 7 8 9 10 

11 13 

14 
16 

17 18 

C2? 
20 

C~o 

25 [23,24] 

21 

Fig. 3 

65 
22 

23 [22] 
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Table 3. Values of REPE (or TRE) 

Y. Jiang and H. Zhang 

Mols. This paper JTH [12] H-S [19] TRE [25, 26] 
(L=6) 

1 -0.385 -0.296 -0.268 -0.307 
2 0.069 0.064 0.065 0.046 
3 -0.068 -0.062 -0.060 -0.060 
4 -0.046 -0.030 -0.038 -0.027 
5 0.006 -0.01 l -0.010 0.009 
6 0.017 0.004 0.005 0.007 
7 0.018 0.003 
8 -0.027 -0.058 
9 0.016 -0.004 -0.002 0.003 

10 0.042 0.052 0.055 0.039 
11 0.036 0.042 0.047 0.034 
12 0.040 0.050 0.055 0.039 
13 0.033 0.036 0.042 0.038 
14 0.031 0.032 0.038 
15 0.044 0.051 0.056 0.041 
16 0.038 0.045 0.051 0.037 
17 -0.023 0.002 0.007 -0.010 
18 0.012 0.023 0.027 0.010 
19 -0,029 -0.017 -0.012 -0.032 
20 -0.019 -0.021 -0.018 -0.027 
21 0.013 0.020 0.023 0.015 
22 0.033 0.034 0.039 0.030 
23 0.068 0.029 0.036 
24 0.007 
25 0.032 0.020 0.021 

Fig. 4 

6. Point-energy and site reactivity 

F o r  a l t e rnan t s ,  the  e q u a l  cha rge  dens i ty  at e a c h  a t o m  gives  l i t t le  i n f o r m a t i o n  

a b o u t  site r eac t iv i ty  [2]. T h e r e f o r e ,  f ree  v a l e n c e  [2],  d e l o c a l i z a t i o n  e n e r g y  [29] 

and  o t h e r  c o n c e p t s  h a v e  b e e n  i n t r o d u c e d .  T h e s e  quan t i t i e s  a re  all  d e f i ned  in 

t e rms  o f  o c c u p i e d  M O  coeff ic ients ,  so do  n o t  i n d i c a t e  the  d e p e n d e n c e  o f  r eac t iv i ty  

on  the  loca l  e n e r g y  a n d  m o l e c u l a r  t o p o l o g y .  I n d e e d ,  e q u a l  cha rge  dens i t i e s  m a y  

b e h a v e  w i t h  u n e q u a l  r eac t iv i ty  in a g r e e m e n t  wi th  the i r  d i f fe ren t  a v e r a g e  energy.  
In  gene ra l ,  s i te r eac t iv i ty  wi l l  be  spec i f ica l ly  d e p e n d e n t  on  the  loca l  ene rgy  

a p p r o p r i a t e l y  def ined .  S u c h  an  i n d e x  n a m e d  p o i n t - e n e r g y  is d e s c r i b e d  be low.  
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Now, u2~ equals the sum of self-adjoint walks of length 21 (W~l) starting from 
point i: 

N 

u2, = 2 W~, (26) 
i = 1  

In order to count W~ in terms of connectivities, it is necessary to divide each 
fragment into sub-species according to the topology of points involved, because 
W~t depends on the environment of point i. For this purpose, symbols a, fl, 
% . . .  are used for specifying inequivalent points of a f ragment  respectively as 
shown in Fig. 5. Similarly, edges are classified into 6,/3, ~? . . . .  species in the same 
sense for later usage. 

As a result, for any fragment the number {G} is equal to the sum of{G} v multiplied 
by the number of v, where v denotes the discriminating inequivalent points. For 
example, there are two subspecies for {3} ~, {4} ~ and {31} ~ with v = a and/3. With 
this specification, W~I can be written as 

W~I = E E C~t~{ G} ~ 6~, (27) 
v G 

where C~ ~ enumerates self-adjoint walks of length 21 starting from point v 
spanned by the fragment G. Lower members are easily carried as illustrated below: 

i a W2 = {2} ~ i  
i c~ oz W4 = {2} 6~ + {3} 6.~ + 2{3}r162 
i c~ ct W6 = {2} a., + 3{3}%% + 6{3}r + {4} 6~, + 2{4}~6,, 

+2{31}" 3~, + 6{31 }r + 2{6}-~ ~ i  

* {2}~6~i + 7{3}~6~i + 13{3}'6~ + 5{4}~6~, + 11{4}'6r W 8 = 

' + 16{6} 6~i c~  /3 +12{31} 6~,+36{31} ae, - ~  +{s} a~,+2{s} a~, 

+ 2{5}~a~ + 2{41}~a~, + 6{41}e6~ + 4{41}v~ + 2{41}CaC~ 

. . . .  (28) 

By substituting the results of Eqs. (26) and (27) into Eq. (12), the total rr-electron 
energy can be rearranged into a sum with a current index running through each 

a a ~  a 6 B  ~ a f f g  ~ a 6 f l  
0 0 0 O 0 0 0 0 0 

{1} {2} {3) {4} {31} 

C > ~ O  0 0 0 0 

; { 4 1 }  {s} 
{~,} (~,1} 

Fig. 5 
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point(atom) of the skeleton 

N 

E,~ = E E~ (29) 
i=1 

where 

E~ = ao + Y~ • dG,~{ GIVav~. (30) 
v G 

Therefore, E;, being the point-energy with respect to the ith atom, can be 
interpreted as the average energy of the ~r-electron density around point(atom) 
i. Values of Ei at various points provide information about site reactivities towards 
substitution reactions, e.g. the smaller the value at the point(atom), the higher 
its reactivity. As indicated by Eq. (30), Ei is computed by summing the contribu- 
tions of fragments connected to point i, where dG~ signifies the energy for a single 
fragment of species {G} ~ which can be evaluated according to the following 
relation 

L 

= C21 a2t. (31) dGv Y~ Gv 
/=1 

Along with the known C2~ ~ in Eq. (28) as well as the a21 in Table 1, numerical 
values of dGv can be readily calculated. Some of them are given in Table 4 for 
L = 2  and L = 4  

The evidence that da~ behaves similarly to/36 should be noted: it decreases when 
the fragment becomes larger and changes sign alternatively in accord with the 
generalized Hfickel rule. This seems fundamental for universally applying the 
fragment analysis to various conjugated hydrocarbons. 

For some qualitative purpose, it is instructive to omit the trivial term ao in Ei, 
because it is common to every point. Thus, the primary role is played by the 

Table  4. Values  of  dG~ 

L = 2  {1} ~ {2} ~ {3} a {3}~ 

0.3904 0.4980 -0 .02827 -0 .05653 

L = 4  {1} ~ {2} = {3} a {3}~ 

0.2393 0.7408 -0 .1376  -0 .2752  

{4} ~ {4} ~ {31} ~ {31} ~ 
0.02085 0.01956 0.03911 0.1175 

{~}~ {5p {5} ~ {5}" 
0.03394 -0 .00130  -0 .00259 -0 .00259 

{41} ~ {41} ~ {41}" {41} r 

-0 .00259 -0 .00777 -0 .00518 -0 .00259 
{61} ~ {61} ~ { 6 1 } ' = { 6 1 ]  ~ = [ 6 1 ]  n 
-0 .00259  -0 .00518 -0 .00259 -0 .00259 
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fragment {2} ~ multiplied by a positive coefficient d2~ which stabilizes the 
point(atom). This means that the site reactivity varies in inverse proportion to 
the valency (or degree) of the point considered, namely mono-valent atoms will 
be the most reactive while tri-valent ones will be the most inert. We would like 
to summarize this familiar evidence as follows: 

Rule 1. Site reactivity decreases as the point degree increases. 

o - - >  

Fig. 6 

When a set of points have equal valency, attention should be paid to the decisive 
term d3,{3} ~ in Eq. (30), because the terms d2~{2} ~ and d3r ~ both become 
trivial. Since d3~ is negative and {3} ~ increases in proportion to the valencies of 
adjacent points, Ei varies in inverse proportion to the valencies of adjacent points, 
so we have the following rule: 

Rule 2. The site reactivities of atoms with equal valency are proportional to the 
valencies of their adjacent atoms. 

This can best be illustrated diagrammatically below 

o o < o  

Fig. 7 

For an acyclic chain, points can be divided into even or odd, with respect to the 
point whose site reactivity is being considered, according to whether their dis- 
tances are even or odd. In general, even points reinforce, but odd points weaken 
the site reactivity. The following diagram shows how site reactivity of an atom 
(solid one) is affected by connectivities. 

- + - + + + 

 ~ -o 
+ 

Fig. 8 

The situation becomes more complicated for benzenoid systems, since the contri- 
bution of cyclic fragments is also significant. As a result, one often needs to 
compute Ei in detail using Eq. (30) and the parameters listed in Table 4, based 
on counting the various fragments. 
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The foregoing arguments and results are easily handled and the site reactivities 
for a compound can be determined by inspection or calculated with the help of 
Table 4. For examples, in Fig. 9, reactivity sequences are written below for each 
compound, provided E~ of phenanthrene has been calculated in detail by means 
of Eq. (30) with d ~  as L = 6 (unpublished). Dozens of benzenoid hydrocarbons 

! 

P 2 3 2 4 5 L ~ Zs 
2>1 3>2>1 

0>p>m 5>4>1 2>3>I 

Fig. 9 

which exhibit linear relationship between E~ and free valence (symbolized by 
F~), have been examined 

F~ = b + aE~ (32) 

where, a = -0.9955, b = 1.7195 for L = 4, and a = -0.9732, b = 1.6966 for L = 6. 
We are therefore encouraged by the fact that point energy E1 is additive in 
fragments, to satisfy the generalized Hfickel rule, and presents a versatile intuitive 
picture for chemists. 

7. Edge-energy and bond lengths 

Owing to the fact that every walk first crosses an edge the moment u2~ can be 
alternatively viewed as the sum of self-adjoint walks of length 21 initiating from 
each edge (W~l) in a molecule. 

u2, = 2 Wil. (33) 
e 

In reference to the classification of fragments with respect to individual edges as 
shown in Fig. 5, a formula analogous to Eq. (27) can readily be derived 

W~, = ~ ~ C 2 ~ { G } ~ e  (34) 
G 

where {G} ~ represents the number of fragment G characterized with edge 6 and 
C~ ~ enumerates walks of  length 21 initiating from edge 6 spanned by G. Lower 
members of  W~I are given as follows 

W~ = 2{2}aa~e 

W,{ = 2{2}~a~e + 2{3} ~6ae 

Wg = 2{2}aaae + 6{3} 6~o7 e q- 2{4}'~ aae q- 2{4} UaBe -f- 4{31}'~r + 2{6} a~a~e 

W~ = 2{2} ~3s, + 14{3}~a, + 1 l{4}'~ae q- 10{4} ~/~e 
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Table 5. Numerical values of SG~ 
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L = 2  

L = 4  

{2} ~ {3} ~ 
0.9955 -0.05653 

{2} a {3} a {4} s {4} d {31} a 
1.4815 -0.2752 0.04041 0.04171 0.07823 

{6} a {5} ~ {5} # {41} s {41} ~ 
0.3394 -0.00259 -0.00259 - 0 . 0 0 5 1 8  -0.o0518 

{41} + {61} s {61} ~ {61} + {61} ~ 
-0.00518 -0.00518 -0.00259 -0.00259 -0.00259 

+ 2 4 { 3 1 } ~ 8 a e  + 1 6 { 6 } a 6 ~ e  + 2{5} ~ 6Se + 2{5}g6t~e 

+ 4 { 4 1 } S 6 a e  + 4{41}g6g~ + 4{41 } a 6 se + 4{61 } s 8ae  

+ 2{61}/38~e + 2{g 1 }'Pa.~e + 2{61 }(6& 

. . . .  (35) 

As a consequence, the total 7r-electron energy is partitioned into the sum of 
edge-energies E~ with respect to each edge 

E= = Nao + ~ Ee (36) 
e 

where 

Ee =2 ~ SGe{f}~ee (37)  
f 

and the coefficient SG~ means the energy contributed from a single fragment of 
species {G} e and satisfies 

L 

C21012l, (38) 
1--1  

Numerical values of S ~  for L = 2 and 4 are tabulated in Table 5. They display 
a qualitative trend quite similar to those of d~v. 

Values of E~ provide information about bond lengths, as well as about reactivities 
toward 1,2-addition reactions. Either the bond lengths or the addition reactivity 
for an arbitrary conjugated bond will be inversely proportional to the value of 
Ee. By comparison with the discussion of point-energies similar qualitative 
conclusions about how the bond lengths depend on edge degrees ~ can be obtained. 

Rule 3. The bond length of an edge varies in proportion to its degree, namely 

o o 

Fig. 10 

1 The degree of an edge is specified by the sum of degrees of its connected points 
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Rule 4. For edges with identical degree, bond lengths vary in inverse proportion 
to degrees of their adjacent points, 

Fig. 11 

By these rules, the shortest edges in benzenoid hydrocarbons can readily be 
designated. Examples are given in Fig. 9 marked with A. These edges are those 
at which 1,2-addition reactions take place [30]. 

8. Local  aromaticity 

The reactivity towards addition and other reactions in a polycyclic hydrocarbon 
of a given hexagon is often related to local aromaticity. As a result of Clar's 
postulate of the "aromatic sextet" [31 ], several empirical investigations have been 
published which can afford fairly reliable predictions of the behaviour of an 
individual ring in a molecule [32-35]. According to Eq. (2J), the REPE is usually 
the value of  the cyclic component of total energy per electron. Thus the resonance 
energy, RE, can be written as 

RE = Y/3a-{G"} (39) 
G "  

where {G"} represents the count  of the cyclic fragment G" and the numerical 
value of/3 c,, has been tabulated in Table 2. Obviously, 

{G"} = • {G"}, (40) 
r 

where r runs through all rings, and {G"}r signifies the count of fragment G" 
involving the rth ring. Substituting Eq. (40) into Eq. (39), the following additive 
formula can be deduced 

RE=Y~ (RE)r (41) 
r 

with 

(RE)r = Y~ fl~,,{G"}r (42) 
U "  

where (RE)r represents resonance energy of  the rth ring. 

In the treatment of benzenoid hydrocarbons, only hexagons are emphasized. As 
a result, it is reasonable to  distribute an average of the (RE)r's of larger rings to 
each hexagon involved. In this way, the resonance energy for a particular hexagon 
is redefined as 

(RE)h = Y~ (RE)r/nr (43) 
r 

in which h is used instead of  r on the left side to signify the hexagon, r on the 
right-hand side runs through all rings involving the hexagon considered, and the 
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denominator nr represents the number of hexagons that the rth ring accommo- 
dates. 

According to Eqs. (42) and (43), it is easy to calculate the value of (RE)h for an 
arbitrary hexagon in a molecule by means of counting fragments {G"}r and 
utilizing Table 2. Dozens of benzenoid hydrocarbons have been investigated and 
several typical results are listed below. 

oxi. 
(14) 

oxi. 
(12) 

~ o x i .  
(14) 

OX1. 
oxi. (14) (12) 
(12) 

oxi. 
(12) 

Fig. 12 

oxi. 
(12) 

oxi. 
(14) 

Where the calculated (RE)h'S are recorded for each hexagon. Symbols (12), (14) 
and oxi. on the side of some rings mean that 1,2-, 1,4-addition reactions and 
oxidations, respectively, are known to take place there experimentally. These 
illustrate the predictive power of (RE)h as defined above, namely: the smaller 
the value of  (RE)h, the easier it is for additional reactions and oxidations to 
occur on ring h. One exception is that the inner ring B in triphenylene has lower 
(RE)h than the three outer ones. Obviously, the inertness of the inner ring 
originates from the saturation of its connectivities, which means that a reaction 
taking place on the ring might simultaneously destroy its adjacent rings. 

A general trend for hexagon aromaticity can be seen from values of (RE)h as 
tabulated above. Upon classifying them into four categories below [33] one can 
make the following summary: 

primary (P) linear (L) kink (K) te~liary (T) 

Fig. 13 
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Table 6. {G"}r for various hexagons in catahexes 

{G"} {G")~ 

P L K T 

{61} 2 4 4 6 
{611} 1 2 3 6 
{6101} 0 2 2 6 
{61001} 0 2 1 3 

Y. Jiang and H. Zhang 

P >  L >  K > T 

This will general ly  be true as can be seen f rom a compar i son  of  {G"}r in Eq. 

(42) with their  contr ibut ions  governed  by genera l ized Hiickel  rule. (See Table  6.) 

By compar ing  {61}, we have 

P >  L, K > u T  

since/391 < 0. Fur thermore ,  owing to 

(RE)k - (RE)L =/351, -/~61OOl < 0 

we obtain 

(RE)p  > ( R E ) L >  (RE)to > (RE)T. 

This t rend was 

approach  [33]. 

(see Table  2) 

also discussed by Hosoya  who used the Pa r i s e r -Pa r r -Pop le  
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